Anatomic dead space

I’d spent some time researching single-breath tests a while back and of course ran across the Fowler method for measuring anatomic dead space. It’s a relatively simple test but assessing its results as well as the results of alternate dead space measurement techniques turns out to be more complicated than I had remembered.

The official definition of anatomic dead space is that it is that part of the inhaled volume that remains in the airways at the end of inhalation and does not participate in gas exchange. An accurate estimate of this volume is important because respiratory dead space (Vd/Vt, discussed previously) is composed of both anatomical and physiological dead space. The physiological component of the respiratory dead space cannot be determined without knowing the anatomical dead space.

Anatomic dead space is usually considered to be the physical volume of the airways but static measurements of airway volume do not take into consideration the dynamic aspects of respiration. The most commonly used method for measuring anatomic dead space in a research setting is the single-breath technique developed by Fowler in 1948. In this method, after an inhalation of oxygen, the nitrogen concentration in an individual’s exhalation is plotted against exhaled volume.

Fowler Dead Space

Continue reading

Vd/Vt, how accurate is it really?

My lab stopped inserting A-lines to get arterial blood samples during exercise testing well over 10 years ago. Our decision was partly based on the fact that we didn’t do them often enough to be good at it and partly based on the fact that we didn’t think that we were getting enough extra information from ABG’s to be worth the effort. Since another local hospital (a competitor but part of the same medical school network so we share pulmonary fellows with them) routinely performs level II and level III exercise tests we felt we could refer any patients that really needed ABG’s to the lab there. We don’t regret the decision and don’t feel that it has compromised the quality of our exercise testing.

Because we don’t obtain ABG’s, one of the values we don’t calculate is the deadspace/tidal volume ratio (Vd/Vt). Recently I was reading an article that related Ve-VCO2 to Vd/Vt and I was reminded of some the issues I had with Vd/Vt when I calculated it in the past. We’ve gone through two different exercise test systems since that time so I’m not sure if some of these problems still exist but I thought it would be a good idea to review both the problems and the literature on Vd/Vt to see if I could make some sense of them.

As a reminder, the original Bohr equation for Vd/Vt was:

Original Bohr Equation

The first problem I had run into was that mixed-expired CO2 (PECO2) is routinely calculated from CPET data as:

PECO2 Equation

But it was also reported as a separate value by the test system’s software and the two values did not match.

Continue reading