The NHANESIII FEV1/FVC ratio and height, revisited

I was reading James Hansen’s textbook on pulmonary function testing and ran across a spot where he made a minor criticism of the NHANESIII (Hankinson et al) reference equations for the FEV1/FVC ratio. Specifically he noted that the NHANESIII equation ignored height and only used age as a variable but that when he compared the directly calculated FEV1/FVC ratio with one indirectly derived from predicted FEV1 and FVC there was a discrepancy across the normal ranges of height of up to 2.4%.

I had also noticed this discrepancy and wrote about it a while back but at the time I’d only been discussing my lab’s adoption of the NHANESIII reference equations. Hansen’s observation intrigued me, so I decided to re-visit this issue more systematically.

To do this I’ve taken 23 different reference equations for men and women and a variety of ethnicities and plotted the change in the FEV1/FVC ratio versus height, and then repeated this across a range of ages.

Male_50yo

Continue reading

What’s normal about the FEV1/FVC ratio?

The FEV1/FVC ratio is used to estimate the presence and degree of airway obstruction. For well over thirty years my lab has used an FEV1/FVC ratio of 95% of predicted as the cutoff for normalcy. This value (carved onto a stone tablet by the way) had been brought to the lab by a founding physician who had come to the department from the NIH in the 1970’s. Since the software and hardware upgrade this summer our PFT Lab has switched to the NHANES III spirometry reference equations but we have so far resisted changing our 95% cutoff to the lower limit of normal (LLN). This is due in part to inertia but also in part to a mistrust in the concept of LLN. We have been steadily re-evaluating all of our testing criteria and have turned again to the FEV1/FVC ratio with the question as to whether our 95% cutoff is over-zealous or whether the LLN is too lax.

Strictly speaking LLN is a statistical concept. In the NHANES III study (and most others) it is computed as the mean predicted value minus 1.645 times the standard estimate of error. Unlike the reference equations for FVC and FEV1 which use both height and age as factors, the NHANES III reference equations for the FEV1/FVC ratio are derived solely from age. It is not clear to me this is completely correct and I have discussed some of the discrepancies between the NHANES III predicted FEV1/FVC ratio and height in a prior posting but it does make analyzing the LLN for the ratio easy. For adult, Caucasian males the reference equations are:

Continue reading

FEV1/FVC ratio and height

The PFT Lab I work with has recently gone through a major software and hardware upgrade. As part of this process we made the decision to switch our spirometry predicted equations to NHANESIII. The lab has been using the Morris predicteds for at least the last 25 years and this switch has led us to re-visit some of the issues involved in interpreting spirometry results.

More than one person that I’ve known and respected has said that spirometry is all about FEV1 and I think this is a true statement. There is a lot of other information you can get from a Forced Vital Capacity but it always comes back to FEV1.

Stepping aside from the mechanical and patient issues involved in obtaining an FEV1, once you have an acceptable FEV1 measurement how do you assess it? There is always the percent predicted and the lower limit of normal (LLN) but a reduced or normal FEV1 by itself cannot differentiate between an obstructive, restrictive or normal pattern. This is where the FEV1/FVC ratio comes in and an interesting question is where the predicted values for this ratio come from.

Continue reading