Temperature (in)correction

Sooner or later we all get lucky and find ourselves able to replace older equipment. When you have equipment that’s so old it can’t be repaired (either because the manufacturer no longer supports it or because the manufacturer no longer exists), you’d think this would be a no-brainer but money is always in short supply. I’ve often had to try to keep equipment running long past its expected life time and was only allowed to replace it when it finally broke beyond all hope of repair.

One of the reasons to perform biological QC is so that you can recognize changes in the equipment that don’t appear during a calibration. It also a useful (and recommended) way to assess new test equipment. So what happens when you finally get that new test system and your results are substantially different from what they were before?

I was recently contacted by the manager of an employee health service that had replaced their 18 year old spirometer with a brand-new one. When using their new spirometer they had found their biological QC results coming out noticeably lower (-9%) than they had gotten from their old spirometer and I was asked if I could help them determine why.

My first question was whether or not they were using the same 3 liter syringe to calibrate the different spirometers. Once I found out this was the case I then asked them to use the 3 liter syringe in test mode. The results from this were actually very informative. The old spirometer showed an average FVC of 3.24 liters and the new spirometer showed an average FVC of 3.06 liters.

Continue reading

Exhaled air temperature and Asthma

One of the hallmarks of chronic asthma is airway inflammation. This frequently causes an increase in the perfusion of the airways which in turn can appear as an increased DLCO in routine PFTs. A number of investigators have noted that this inflammation can also cause an increase in exhaled air temperature. This increase in exhaled air temperature is not due to an increase in body temperature but to increase in the rate of heat exchange between the airways and respired air due to the increased airway perfusion.

Because the increase in exhaled air temperature also correlates reasonably well with exhaled Nitric Oxide (NO) levels it would seem that measuring exhaled air temperature as part of spirometry or other pulmonary function testing could either act as a substitute for exhaled NO measurements or at least indicate which patients would benefit the most from exhaled NO measurements. It turns out however, that making these measurements is a lot more complicated than it would appear at first glance.

The most important factor that makes exhaled temperature difficult to measure is that it varies throughout exhalation. This has lead to two different approaches to measuring exhaled air temperature. First by measuring the rate at which exhaled air temperature changes during a slow exhalation. Second, by measuring the plateau temperature (PLET) which usually occurs near the end of exhalation and also usually from a slow, controlled exhalation.

Continue reading