2019 ATS/ERS Spirometry Standards

The 2019 ATS/ERS Spirometry Standards were recently released. The standards are open-access and can be downloaded without charge from the October 15th issue of the American Journal of Respiratory and Critical Care Medicine. Supplements are available from the same web page.

The 2019 Spirometry Standards have been extensively re-organized with numerous updates. Notably, a number of sections that were previously discussed in the 2005 General Considerations for Lung Function Testing have been updated and included in the 2019 Spirometry Standards. Also notably, a number of stand-alone spirometry tests, including the Flow-Volume Loop, PEF and MVV are not included in the 2019 Standards.

An overview of changes and updates from the 2005 Spirometry Standards are detailed within the 2019 Spirometry Standards (page e71, column 1, paragraph 2) and in the Data Supplement (pages E2-E3). In more detail these include:

◆ The list of indications for spirometry (page e73, table 1) was updated primarily with changes in language.

  • “To measure the effect of disease on pulmonary function” was updated to “To measure the physiological effect of disease or disorder”
  • “To describe the course of diseases that affect lung function” was updated to “To monitor disease progression”
  • “To monitor people exposed to injurious agents” was updated to “To monitor people for adverse effects of exposure to injurious agents”

◆ Items added to indications:

  • “Research and clinical trials”
  • “Preemployment and lung health monitoring for at-risk occupations”

◆ Contraindications were previously mentioned in the 2005 General Considerations rather than the 2005 Spirometry Standards and these have been extensively updated and expanded. Although the list of contraindications (page e74, table 2) is fairly inclusive (and should be reviewed by all concerned) there were items mentioned in the body of text that were not in the table:

  • “Spirometry should be discontinued if the patient experiences pain during the maneuver.”
  • “…because spirometry requires the active participation of the patient, inability to understand directions or unwillingness to follow the directions of the operator will usually lead to submaximal test results.”

◆ Notably, abdominal aortic aneurysm (AAA) was not included as a contraindication in the 2019 standards. (page e72, column 3, paragraph 1)

Continue reading

Sharing opinions with Paul Enright

Dr. Paul Enright is a well-known name in the field of Pulmonary Function testing. He is the lead author or co-author of over a hundred articles and has served on many of the ATS/ERS standards committees.

Introduction:

We both retired in southern Arizona and live a couple of towns apart from each other. We have corresponded for a while but met face-to-face only recently. We both drive small red vehicles, Richard a Ford Transit Van and Paul a Prius Compact. We both love to visit National Parks; Richard’s favorite is Canyonlands while Paul’s favorite is Jasper, with many large wild animals. This posting is based on a set of suggestions by Paul.

In which hospital-based PFT labs have you worked?

Richard: St. Elizabeth’s then Beth Israel Deaconess Medical Center, both in Boston.

Paul: I started a very small PFT lab at the Kuakini Hospital in Honolulu; then the basement lab of the National Jewish Hospital in Denver, Colorado; then the Plummer Building of the Mayo Clinic in Rochester Minnesota; then the University Medical Center in Tucson, Arizona; then a NIOSH van running out of Morgantown, West Virginia.

Which is the largest PFT lab that you ever visited?

Richard: the PFT Lab at Mass General in Boston.

Paul: INER in Mexico City, where they test more than 10,000 patients per year. The medical director of the lab is my friend Laura G. One year a guard with a shotgun stood outside the lab because the payroll with bonuses for the institution was stolen the previous month (December).

Continue reading

Infection Control

The issue of infection control has been a topic of a couple of discussions I’ve had lately. In particular, it was reported to me that a PFT lab had come under fire from a Joint Commission inspector who did not believe that filter mouthpieces were adequate and that “patient valves and circuits need to be sterilized between each patient”.

Unfortunately with all the other things we have to worry about it’s all too easy to become blasé about infection control. This despite the fact that every hospital I’ve visited in the last dozen or so years has posted numerous signs about hand washing and the safe disposal of contaminated supplies. But maybe it’s because we’re inundated with reminders that we’ve developed a blind spot about it.

The 2005 ATS/ERS statement on general considerations has two pages devoted to infection control (pages 155-157). The ATS procedure manual also has four pages devoted to infection control (pages 34-38), although much of this is devoted to a discussion of tuberculosis, cystic fibrosis and sterilization procedures. Of necessity, the ATS/ERS statement and ATS procedure manual discuss infection control in generalities and any given lab will need to have a policy tailored for their specific circumstances. Even so, either or both of these (as well as Kendrick et al’s 2003 review) should be the basis for your lab’s policy on infection control (and you do have one, don’t you?).

So what are the issues?

Diseases can be transmitted by direct contact (saliva) or indirect contact (airborne particles). PFT Labs need to prevent cross-transmission of diseases by the use of barrier devices (gloves, filter mouthpieces) and proper cleaning procedures.

So yeah, it’s as simple as that, but as usual the devil is in the details and in particular there are trade-offs between expense, time and efficacy. Continue reading

2017 ATS PFT Reporting Standardization

The ATS has released its first standard for reporting pulmonary function results. This report is in the December 1, 2017 issue of the American Journal of Respiratory and Critical Care Medicine. At the present time however, despite its importance it is not an open access article and you must either be a member of the ATS or pay a fee ($25) in order to access it. Hopefully, it will soon be included with the other open access ATS/ERS standards.

There are a number of interesting recommendations made in the standard that supersede or refine recommendations made in prior ATS/ERS standards, or are otherwise presented for the first time. Specific recommendations include (although not necessarily in the order they were discussed within the standard):

  • The lower limit of normal, where available, should be reported for all test results.
  • The Z-score, where available, should be reported for all test results. A linear graphical display for this is recommended for spirometry and DLCO results.
  • Results should be reported in tables, with individual results in rows. The result’s numerical value, LLN, Z-score and percent predicted are reported in columns, in that recommended order. Reporting the predicted value is discouraged.

Part of Figure 1 from page 1466 of the ATS Recommendations for a Standardized Pulmonary Function Report.

Continue reading

Should biological quality control be replaced?

I’ve been thinking about quality control and quality improvement lately. Mostly this has been about how to go about determining whether the lab has a quality problem with testing and what statistics should be used for this purpose but I was reminded recently about an issue concerning biological quality control that came up a couple months ago on the AARC diagnostics forum. Specifically, one of the participants noted that some of their technicians had refused to perform biological QC on the basis that it violated their HIPAA rights to the privacy of their medical information. Further discussion noted that this was actually a correct interpretation of the HIPAA regulations and that no PFT lab can “force” its technicians to perform biological QC.

I will be the first to admit that I’d never thought about it this way, and I’ve been mulling it over ever since. I’ve performed PFT testing on myself both for formal biological QC and as a quick way to check the operation of a test system for decades but I never thought of my PFT results as being part of my medical information. That’s probably an indication of my own short-sightedness however, and I also realize that over the years I’ve run across a number of testing issues I’d taken for granted up until somebody pointed out a problem with them.

My attitude towards my PFT results may also be due to the fact that I don’t have any notable lung disease. My lab has had technicians who have been asthmatic however, and this has never been a factor in whether they were hired or not (other than not letting them perform methacholine challenges). They’ve usually performed bio-QC on themselves and at the time they seemed to regard it as a way to check on the status of their asthma. In retrospect however, I have to wonder if they were ever concerned that I would use their health status and test information against them in their annual evaluation, or even that the hospital would re-consider their employment because the costs of their health insurance might be higher. Although I don’t think the hospitals I’ve worked for ever thought along these lines, like it or not there are many businesses where this is a factor.

Yesterday I asked myself what would happen if all PFT labs were required to completely end biological quality control because of HIPAA requirements? It didn’t take a lot of thought to realize that there are a number of mechanical test simulators in the marketplace that could do quite well at replacing the biological part of quality control. As importantly, the more I’ve thought about it the more I’ve come to think that biological QC probably isn’t the right way to go about QC in the first place.

Continue reading

PFTs on YouTube

A friend recently sent me the links to several YouTube videos on pulmonary function testing. I’ve spent some time off and on over the last year looking at YouTube videos and in particular I’ve been looking for ones that can be used as part of technician education. Maybe I’ve set the bar too high but all too often I’ve been disappointed and frustrated with what I’ve found. One reason for this is that many videos are aimed at other audiences than technicians (i.e. medical students, physicians, patients). Another reason is that too often only simple concepts are presented, often in rote fashion and often without good visual explanations (c’mon, these are videos after all, not podcasts). A final reason is that sometimes they’re outdated, misleading or just plain wrong.

Still, even the flawed videos can be useful. Sometimes this is because they occasionally explain some concepts well; sometimes despite being simplistic they present a good overview; and sometimes because their mistakes can serve as points for discussion. I’ve tried to select videos that have at least some potential for use in technician education.

John B. West Respiratory Physiology Lectures

Based primarily on his classic textbook, ‘Respiratory Physiology’ (which should be on everybody’s bookshelf). Not 100% perfect but this is what many of the other videos should aspire to be. Many complex concepts explained using simple examples. Lots of interesting pictures and illustrations. Should be part of every technician’s education.

  1. Structure and Function
  2. Ventilation
  3. Blood Gas Transport
  4. Acid-Base Balance
  5. Diffusion
  6. Pulmonary Blood Flow
  7. Pulmonary Gas Exchange, Part 1
  8. Pulmonary Gas Exchange, Part 2
  9. Mechanics of Breathing, Part 1
  10. Mechanics of Breathing, Part 2
  11. Control of Ventilation
  12. Defense Systems of the Lung
  13. Respiration under Stress
  14. Respiration at the Limit

Continue reading

Contraindications

A couple weeks ago I was asked whether it was safe for a patient with an abdominal aortic aneurysm (AAA) to have pulmonary function testing. My first thought was that it was probably unsafe but after a moment or two of thought I realized that I hadn’t reviewed the subject for a long time. When I checked the 2005 ATS/ERS general testing guidelines (there are no contraindications in the 2005 spirometry guidelines) I found that AAA wasn’t mentioned at all. In fact, the only absolute contraindication mentioned was that patients with a recent myocardial infarction (<1 month) should not be tested. Some relative contraindications were mentioned:

  • chest or abdominal pain
  • oral or facial pain
  • stress incontinence
  • dementia or confusional state

and activities that should be avoided prior to testing include:

  • smoking within 1 hour of testing
  • consuming alcohol within 4 hours of testing
  • performing vigorous exercise within 30 minutes of testing
  • wearing clothing that restricts the chest or abdomen
  • eating a large meal with 2 hours of testing

but these were factors where test results were likely to be suboptimal and not actually contraindications.

This got me curious since I thought that pulmonary function testing was contraindicated for more conditions than just an MI. I reviewed the 1994 and and then the 1987 ATS statements on spirometry but again found no mention of contraindications. Ditto on the 1993 ERS statement on spirometry and lung volumes. Finally, in the 1996 AARC clinical guidelines for spirometry I found a much longer list of contraindications:

  • hemoptysis of unknown origin
  • pneumothorax
  • recent mycardial infarction
  • recent pulmonary embolus
  • thoracic, abdominal or cerebral aneuysms
  • recent eye surgery
  • presence of an acute disease process that might interfere with test performance (e.g. nausea, vomiting)
  • recent surgery of thorax or abdomen

So where did the AARC’s list of contraindications come from? And why is there such a discrepancy between the ATS/ERS and the AARC guidelines?

Continue reading

CPT Codes

About a month or so ago I was corresponding with the manager of a small PFT lab and in response to one of their questions I had mentioned that there were no CPT codes for MIP/MEP. They responded with “what’s a CPT code?” so I guess this means that CPT codes aren’t as well known as I thought they were.

CPT stands for Current Procedural Terminology and is managed by the American Medical Association. CPT codes are a relatively universal way to classify and describe all medical tests and procedures. They are also used by all insurance companies for medical billing so one downside to this is if there isn’t a CPT code for a test or a procedure, you can’t bill for it. CPT codes also include conditions that limit performing (or at least billing for) some tests in various combinations and to some extent this drives the way PFT tests are ordered and performed.

The CPT codes are reviewed, revised and updated annually. There have been a number of additions and changes to PFT CPT codes during the last five to ten years, and I’d say that with a few notable exceptions, most current PFT testing is adequately covered by the CPT codes. The current PFT CPT codes are:

CPT: Description: Exclusions:
94010 Spirometry, including graphic record, total and timed vital capacity, expiratory flow measurement(s), with or without maximum voluntary ventilation. Do not report in conjunction with 94150, 94200, 94375, 94728.
94011 Measurement of spirometry forced expiratory flows in an infant or child through 2 years of age
94012 Measurement of spirometry forced expiratory flows, before and after bronchodilator, in an infant or child through 2 years of age.
94013 Measurement of lung volumes (i.e., functional residual capacity (FRC); forced vital capacity (FVC), and expiratory reserve volume (ERV) in an infant or child through 2 years of age.
94014 Patient-initiated spirometry recording per 30 day period of time; includes reinforced education, transmission of spirometry tracing, data capture, analysis of transmitted data, periodic recalibration and review and interpretation by a physician or other qualified health professional.
94015 [patient-initiated spirometry] recording (includes hook-up, reinforced education, data transmission, data capture, trend analysis, and periodic recalibration).
94016 [patient-initiated spirometry] review and interpretation only by a physician or other qualified health professional.
94060 Bronchodilator responsiveness, spirometry as in 94010, pre- and post-bronchodilator administration. Do not report in conjunction with 94150, 94200, 94375, 94728. For prolonged exercise test for bronchospasm with pre- and post-spirometry use 94620.
94070 Bronchspasm provocation evaluation, multiple spirometric determination s as in 94010, with administered agents (eg. antigen(s), cold air, methacholine).

Continue reading

New Year’s Resolutions for a better PFT lab

It’s a tradition to come up with New Year’s resolution in order to improve ourselves. How about some resolutions to improve our labs?

1. Review and update the procedure manual

When was the last time you reviewed your procedure manual? Procedure manuals should be reviewed by the lab manager and medical director annually. It’s time to re-read the ATS/ERS guidelines and then review and update your procedure manual. Both your old staff and your new staff need to know what to do and how to do it. Your procedure manual is also going to be the first thing that anybody looks at if your lab is ever inspected.

2. Biological QC

Daily calibrations (and you’re doing daily calibrations and keeping a log of them, aren’t you?) are not enough to make sure our test systems are operating correctly. Regular (weekly, bi-weekly or monthly) biological quality control on ourselves with a Levey-Jennings chart is still the best way to do this. Don’t put it off. Biological QC is not an option; it’s a minimum requirement for any medical lab.
Continue reading

Re-branding, re-imagining and re-defining ourselves

This idea originates, as far as I know, from Michael Sims, president and CEO of NspireHealth. I got it second hand and suspect that it is a small part of a larger presentation but this one point is worth discussing by itself. Specifically, we call the places we work “Pulmonary Function Laboratories” and this is at best an outdated and somewhat obscure term that doesn’t do much to make it clear what we do.

What’s wrong with calling it a Pulmonary Function Lab?

Well “Pulmonary” is okay since it’s a rather dignified and erudite term for the part of the body we’re primarily concerned with. “Function” however, is a somewhat vague or ambiguous term. The dictionary definition (or at least one of them since the other is mathematical) is “an activity or purpose natural to or intended for a person or thing”. That sort of applies to what we do but not with any particular precision or clarity.

I think that it’s the words “Lab” or “Laboratory” are the biggest problem since they conjure up images of Bunsen burners, test tubes and white-coated scientists engaged in research (the buzzing electrical arcs climbing up Jacobs’ Ladders and cries of “it’s alive!” are optional). The dictionary definition is “a room or building equipped for scientific experiments, research, or teaching, or for the manufacture of drugs or chemicals.” Not particularly specific to what we do and not necessarily a place you’d want to have any tests performed.

Michael Sim’s suggestion was that we re-brand our place of work by calling it “Pulmonary Diagnostic Services” instead. This is an unambiguous title that clearly identifies what we do. More than that, it gives us an opportunity to re-imagine and re-define exactly what it is we do.

Continue reading